|
In mathematics, a Luzin space (or Lusin space), named for N. N. Luzin, is an uncountable topological T1 space without isolated points in which every nowhere-dense subset is countable. There are many minor variations of this definition in use: the T1 condition can be replaced by T2 or T3, and some authors allow a countable or even arbitrary number of isolated points. The existence of a Luzin space is independent of the axioms of ZFC. showed that the continuum hypothesis implies that a Luzin space exists. showed that assuming Martin's Axiom and the negation of the continuum hypothesis, there are no Hausdorff Luzin spaces. == In real analysis == In real analysis and descriptive set theory, a Luzin set (or Lusin set), is defined as an uncountable subset of the reals such that every uncountable subset of is nonmeager; that is, of second Baire category. Equivalently, is an uncountable set of reals which meets every first category set in only countably many points. Luzin proved that, if the continuum hypothesis holds, then every nonmeager set has a Luzin subset. Obvious properties of a Luzin set are that it must be nonmeager (otherwise the set itself is an uncountable meager subset) and of measure zero, because every set of positive measure contains a meager set which also has positive measure, and is therefore uncountable. A weakly Luzin set is an uncountable subset of a real vector space such that for any uncountable subset the set of directions between different elements of the subset is dense in the sphere of directions. The measure-category duality provides a measure analogue of Luzin sets – sets of positive outer measure, every uncountable subset of which has positive outer measure. These sets are called Sierpiński sets, after Wacław Sierpiński. Sierpiński sets are weakly Luzin sets but are not Luzin sets. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Luzin space」の詳細全文を読む スポンサード リンク
|